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load on the system.

The methanol concentrations, temperature and current were considered as inputs, the cell voltage was
taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-
network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-
based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the
ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature
and methanol concentration greatly affect the performance of the DMFC. Within a restricted current
range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel
utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the

© 2008 Published by Elsevier B.V.

1. Introduction

Direct methanol fuel cells (DMFCs) are one of the most promis-
ing energy conversion devices for portable applications due to their
high energy density for the generation of electric power from fuel
[1]. The output voltage of the DMFC is affected by many factors
such as air flow rates, temperature and methanol concentration
[2-4].In order to overcome these problems, it is necessary to find a
simplified model to design a control strategy for the DMFC system.

The precise mathematical models are of great importance for
feasibility studies and optimization of the DMFC system. However,
it is very difficult to build up an analytical model due to the com-
plex nonlinear multi-input and multi-output characteristics for the
DMEFC system [5]. Although many physical models have been pre-
sented so far, most of them focus on the design of the DMFC and
description of the relevant internal details [6-8]. In fact, many users
greatly need models that can describe the behavior of fuel cells
under various operating conditions. Such models are, at the very
least, important for research into the control of fuel cells.

* Corresponding author at: A316, INET, Tsinghua University, Beijing 100084,
China. Tel.: +86 10 62784827; fax: +86 10 62771150.
** Corresponding author. Tel.: +86 10 62799024; fax: +86 10 62795356.
E-mail addresses: xiexf@tsinghua.edu.cn (X. Xie), lcew@tsinghua.edu.cn (C. Li).

0378-7753/$ - see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.jpowsour.2008.06.090

The artificial neural network (ANN) has been accepted as an
effective modeling method and can be used to capture complex
input/output relationships of interest [9,10]. The fuzzy inference
system (FIS) can model the qualitative aspects of human knowledge
and the reasoning processes without precise quantitative analyses.
It is well suited for dealing with ill-defined and uncertain systems
[11]. A hybrid of ANN and FIS can make use of the advantages
of both ANN and FIS, and it has become one focus of research
in recent years [12-14]. A specific approach in a hybrid of ANN
and FIS development is the adaptive-network-based fuzzy infer-
ence system (ANFIS), which serves as a basis for constructing a
set of fuzzy rules with appropriate functions to generate the stip-
ulated input/output pairs [15]. The ANFIS approach has recently
been recognized as an effective modeling method in many fields
of engineering [16-18]. Entchev and Wu successfully used ANFIS to
model the solid oxide fuel cell (SOFC)[16,19]. Tao and Dong devised
thermal models for proton exchange membrane fuel cells (PEMFCs)
based on ANFIS [17,20]. To our best knowledge, however, no pub-
lished papers have used ANFIS to model the performance of DMFC
or PEMFC with multi-inputs.

In this study, the concept of ANFIS, ANN- and polynomial-based
models are described. The temperature, current and methanol con-
centrations were taken as inputs, the cell voltage was taken as
output, and the cell performance was identified by ANFIS. The ANN-
and polynomial-based model were selected to be compared with
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Nomenclature

a coefficient of polynomial model
a coefficient vector of polynomial model
b; bias for the ith neuron in the hidden layer of ANN

C methanol concentration

CcC correlation coefficient

CCS constant concentration surface

Cov covariance

d slope parameter of sigmoid function

D variance

E reversible open-circuit voltage (V)

FIS fuzzy inference system

g sigmoid function

I current (A)

m actual cell voltage from experiment

M vectors made up of actual experimental values
MF membership function

N number of data points

p predicted value by models

P vectors made up of predicted values by models
R correlation coefficient

RMSE  root mean square error

S parameter set of ANFIS

S1 premise set of ANFIS

S, consequent set of ANFIS

T absolute temperature (K)

u firing strength of a rule in the ANFIS

v hidden layer input of the ANN

% stack output voltage (V)

Vv vector made up of stack voltage at various condition

Wi weight from the jth input to the ith hidden layer
neuron in ANN

wy; weight from the ith output in the hidden layer to the
kth output layer neuron in ANN

Vi output from the kth output neuron of ANN

z output of ANFIS

Greek symbol

1% membership function of ANFIS

the ANFIS in respect of quality and accuracy. The results show that
the ANFIS-based model has a better performance than the ANN-
and polynomial-based models.

2. Experiments and samples
2.1. Experiment

The membrane electrode assembly (MEA) consisted of a poly-
mer membrane, the anode and the cathode catalyst layers and
two gas diffusion layers. Nafion117 (DuPont®) was used as a
membrane. Each cell has an active area of 48.2cm?. The stack
was assembled using a homemade housing which comprised two
epoxy resin end plates and two copper plates of 3 mm thickness
as current collectors. A picture of the DMFC stack is shown in
Fig. 1.

The test system consisted of an electronic load controller, a
methanol solution tank, a heat exchanger, a water bath for pre-
heating the methanol solution, a gear pump for pumping methanol
solution, an air compressor and an Ethernet Multimeter/data log-
ger system for logging measurements. All experimental data were

Fig. 1. Photograph of the tested 5-cell DMFC stack.

obtained at ambient pressure. Details of the cell and test system
can be found elsewhere [21].

2.2. Preparation of data sets

The methanol solution was pre-heated to the desired tempera-
ture before it was delivered to the fuel cell stack. The flow rates of air
and methanol solution were kept constant. The methanol exhaust-
ing from the testing stack was not allowed to circulate back to the
solution tank in order to keep the methanol concentration constant.

A typical I-V characteristic of the DMFC is shown in Fig. 2. It
shows that there is a large voltage drop at low current densities
(i.e., close to the open-circuit voltage, OCV). This region is known
as the activation polarization region. Modeling with data set taken
from within the activation polarization region will make the per-
formance of the model worse due to the rapid change of voltage.
It is not necessary to model the fuel cell condition in this region
because the current is too small.

In this study, six methanol concentrations from 0.67 to
2.33mol L~ (increments of 0.33 mol L-!) were tested. Each of the
six levels was assigned with sufficient measurement points in the
temperature range from 25 to 55 °Cand the voltage range from 1.3 to
3V.The data set was separated into training data and checking data
at aratio of 3:1. The training data set was used to train the models,
whereas the checking data set was used to verify the effectiveness
of the models obtained. The checking points were selected at ran-
dom from the whole data base. The distribution of the 1 molL~!
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Fig. 2. -V characteristics of the DMFC stack (methanol concentration, 1.00 mol L~1).
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Fig. 3. The distribution of the checking and training points in the three-dimensional
measurement space (methanol concentration, 1.00 molL-1).

Table 1
The number of training and checking points at each concentration

Concentration (molL~')  Number of training points Number of checking points

0.67 45 15
1.00 48 16
il.255 40 13
1.67 42 15
2.00 56 18
233 54 18

level training and checking points in the three-dimensional mea-
surement space is shown in Fig. 3. The number of training points
and checking points for each concentration are listed in Table 1.

3. Method formulation
3.1. Polynomial-based models

The voltage of a DMFC depends very much on the operating
conditions including temperature, methanol concentration and the
flow rates of air and methanol solution [22]. When the flow rates
of methanol and air are kept constant, the voltage can be written
as [23]:

V=h{CT) (1)

where C denotes the methanol concentration and V, I and T denote
the theoretical open-circuit voltage, voltage and current, respec-
tively. The function in Eq. (1) can be approximated as follows [23]:

V= h(l, C, T) = a1 + 1121 —+ a3C =+ (14T —+ a5IC + GGIT —+ G7CT —+ 0312
+a9C? + a1oT? + anICT + a12I%C + a3 2T
+a14C?T + - + anI*CPTY (2)

where a = [ay, az, .. ., an]T are the unknown constant coefficients
to be determined and the subscript n of a,; denotes the number of
unknown coefficients.

In order to solve a, different experimental measurements [I;, G;,
T;] withi=1, 2, ..., m are taken for various current, concentrations
and temperature. These are substituted into Eq. (2) to produce a set
of polynomial equations:
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Fig. 4. Structure of a feed-forward three-layer neural network.
Therefore, the unknown coefficients a = [a1, ap, . . ., an]T can be

solved by the least-squares method (LSM) [23] as follows:

- -1 -

a=(Q'Q) Q'v (4)

3.2. Artificial neural network (ANN)

ANN can approximate any linear or nonlinear function well. A
feed-forward neural network with supervised training [24] was uti-
lized in this study. The structure of the feed-forward three-layer
neural network is shown in Fig. 4.

The network consists of an input layer, a hidden layer and an
output layer. The transfer function for the hidden layer is a sigmoid
function, whose form is defined by:

1

—_— 5
1+e—dv ( )

gv)=
where d is the slope parameter. The input of the hidden layer can
be described by the following equation:

n
Vi = ZWIJX] + b,’ (6)
j=1

where w; is the weight from the jth input x; to the ith neuron in the
hidden layer, and b; is the bias. If the function in the output layer is
linear, the model equation for the entire network can be expressed
as follows:

N N n
V=Y whvi=> wig> wyx; +by) (7)
i=1 i=1 j=1

where y; is the output signal from the kth output neuron, and wy,
is the weight from the ith output v; to the kth neuron in the output
layer. In this study, the weights and bias values of ANN are updated
according to the gradient descent momentum algorithm, which is
considered to be one of the best training algorithms for the ANN.

3.3. Adaptive-network-based fuzzy inference system

The ANFIS is a 5-layered network, in which the layers are
not fully connected and the membership function parameters are
extracted from a data set that describes the system behavior. The
ANFIS learns features in the data set and adjusts the system param-
eters according to the given error criterion.

1] 1L ¢ T, LG LTy GT: L2 6?2 T2 LGT IHey a

R Vs 1L, G T, LG LT, G L2 G 2 LGHL ey a )

h= =(.. . . . . . . . . . =V=Qa
Vim 1In Cn Tm InCin InTm CuTm Im® Cm® Tm?  InGnTm g.chrd ] Lan
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Fig. 5. Structure of an adaptive neuro-fuzzy inference system.

For simplicity, suppose that the ANFIS under consideration has
two inputs and one output, and that the rule base for the system
contains just two fuzzy if-then rules of the Takagi and Sugeno type
[25].

(1) Rule 1: if xis A; and y is By, then z; =p1x+qy +11.
(2) Rule 2: if xis Ay and y is By, then z; =pyx +qay +12.

where A and B are known as the linguistic labels. The ANFIS archi-

tecture is shown in Fig. 5, in which a circle indicates a fixed node

and a square indicates an adaptive node. The node functions in the

same layer are of the same function family as described below:
Layer 1: In this layer the functions of the nodes should be bell-

shaped with a maximum value equal to 1 and minimum to 0. The

functions used were:

_ 1

1+ I(x = ¢)ag?hi

1
1+1(y — ¢j)fa;l?bi°

1 (%) =12, (8)

where f14,(x) and pp,(y) are the membership functions (MFs) with
the parameter set {a;, b;, ¢;}. As the values of these parameters
change, the bell-shaped functions vary accordingly.

Layer 2: Every node in this layer multiplies all the incoming
signals (the output of first layer) and sends out the product.

ui:MAi(X)XMBj(y)’ i= 1,2, and .]: 1,2, (]0)

Each node output represents the firing strength of a rule.
Layer 3: The ith node in the layer calculates the ratio of the ith
rule’s firing strength to the sum of all rules firing strength.
- u;
u; = .
uy +up

i=1,2, (11)

where u; and u; are the outputs of the two nodes of the second
layer.

Layer 4: The dimension of the layer determines the number of
fuzzy rules in the system. Every node in this layer is a square node
with a linear function whose form is defined by

Of =z = Wi(pix + qiy + 1), i=1,2, (12)

where i; is the output of layer 3, and {p;, q;, r;} denotes the param-
eter set referred to as the consequent parameters.

Layer 5: The single node in the layer simply computes the sum
of the layer 4 outputs in order to obtain the overall system output,
ie.,

| Z1 + 12 ) (13)

z=§ U;z; = U121 + Uxzy =
: i4i 141 242 Us + Uy Up + Uy

1
The ANFIS network should be trained to learn about the data and its
nature. During the learning processes, the parameters were tuned
until the desired output was reached. The gradient descent method

can be used to identify the parameters in the ANFIS. However, the
gradient descent method is slow and tends to be trapped in local
minima. Therefore, a hybrid learning algorithm was used to iden-
tify the parameters of ANFIS. It applied a combination of the LSM
and the back-propagation gradient descent method for training FIS
membership function parameters to emulate a given training data
set.

The parameter set S in the proposed network can be spilt into
two subsets:

S=5:165; (14)

where @ is the direct sum, and S; and S, represent premise and
consequent sets, respectively. In fact, since the network output is
obtained as a linear combination of all coming signals, the output
z can be described as:

z = (1 x)p1 + (U1y)q1 + gy + (UX)p2 + (U2y)q2 + Uar (15)

The learning rules are performed through two steps: the con-
sequent parameters are first identified by the LSM, and then the
error rates propagate backward and the premise is updated by the
gradient descent method [15].

3.4. Criteria for performance evaluation

The performance of the models can be evaluated using different
criteria. In this work, the performance of each model was evaluated
by the root mean square error (RMSE) and correlation coefficients
(CCQ) for the training and testing data sets.

The RMSE is defined by:

(16)

where m is the actual value from experiments, p is the predicted
value from the models and N is the number of data points.
The CC is defined by:

Cov(M, P)

\/D(M)\/D(P)

where M and P are vectors made up of the actual value from experi-
ments and the predicted value from models, respectively. Cov(M,P)
is the covariance for vectors M and P, where D(M) and D(P) denote
the variance of M and P, respectively. The closer the correlation
coefficient R is to 1, the more precise is the model.

R= (17)

4. Results and discussion

In order to compare the performance of the different model-
ing methods, the models were trained with the same training data
set. The validity of the models obtained was tested using the same
checking data set. The CC of the checking data and the RMSE of
training and checking data for each model are listed in Table 2.

4.1. Comparison of modeling accuracy

Fig. 6 shows the results of the polynomial models compared
with the 95 checking data points. Third-order, forth-order and
fifth-order polynomials with 20, 35 and 56 unknown constant coef-
ficients, respectively, were trained and checked. It was found that
the fifth-order polynomial had the best performance due to the
largest coefficient number. Sixth-order polynomial was also tried
out in this study, but it was found that the generalization capability
was very bad as the RMSE for the checking data was abnormally
large.
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Table 2
Modeling results with different types of models

Models RMSE (training data) RMSE (checking data) Correlation coefficient (checking data)
Polynomial (third-order) 0.03743 0.05033 0.99570
Polynomial (forth-order) 0.03596 0.04777 0.99651
Polynomial (fifth-order) 0.03382 0.04373 0.99757
ANN (10 hidden nodes) 0.02371 0.03955 0.99838
ANN (15 hidden nodes) 0.02188 0.03619 0.99835
ANN (20 hidden nodes) 0.02124 0.03520 0.99900
ANN (25 hidden nodes) 0.01920 0.03725 0.99874
ANN (30 hidden nodes) 0.01906 0.04428 0.99851
ANFIS (2-2-2) 0.03460 0.04597 0.99709
ANFIS (3-2-2) 0.02283 0.03571 0.99873
ANFIS (2-3-2) 0.03282 0.04769 0.99662
ANFIS (2-2-3) 0.03361 0.04797 0.99656
ANFIS (3-3-2) 0.02049 0.03120 0.99907
ANFIS (3-2-3) 0.01819 0.03380 0.99804
ANFIS (2-3-3) 0.03268 0.04889 0.99639
ANFIS (3-3-3) 0.01753 0.03565 0.99892
ANFIS (4-3-3) 0.01781 0.03031 0.99933
ANFIS (3-4-3) 0.01646 0.04153 0.99805
ANFIS (3-3-4) 0.01528 0.06499 0.99194
ANFIS (4-4-3) 0.01874 0.03860 0.99851
ANFIS (4-3-4) 0.01693 0.06289 0.99185
ANFIS (3-4-4) 0.01616 0.06274 0.99183
ANFIS (4-4-4) 0.01520 0.07963 0.98013
Fig. 7 shows the predicted values of the ANN-based models com-
pared with the checking data points. During the early stage of the 3

training, the checking error decreased rapidly. Over-fitting was rec-
ognized by the error becoming flat or even increasing slightly, and at
this point the training was stopped. Many better ANN models with
different numbers of hidden nodes were trained. It was found that
the greater the number of hidden nodes, the smaller was the RMSE
for the training data, that is the ANN with more hidden nodes could
approximate the training data more precisely. However, too many
hidden nodes might lead to over-fitting on the experimental data
and a decreased generalization capability of the ANN. For example,
the checking RMSE of the ANN with 20 and 30 hidden nodes were
0.03520 and 0.04428, respectively. This means that the ANN with
20 hidden nodes has better generalization capability than that of
the ANN with 30 hidden nodes.

Comparison of predicted values of 95 checking data points using
two ANFIS-based models, is shown in Fig. 8. ANFIS with different
types of MFs such as triangular-shaped, Gaussian curve, Sigmoid-
shaped MFs and the like [26] were tried out. Among these different
types of MFs, the Gaussian curve MF provided the best results for
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Fig. 6. Comparison of the predicted cell voltage using the polynomial-based model
with actual experimental values.

+  ANN (15 hidden nodes)
+  ANN (20 hidden nodes)

N
&)

predicted voltage (V)
N

b
[&)]
T

measured voltage (V)
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Fig. 8. Comparison of the predicted cell voltage using the ANFIS-based models with
actual experimental values.
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Fig. 9. Comparison of experimental data and predicted voltages using the chosen
ANFIS model.

the prediction of performance. ANFIS-based models were tried out
with different numbers of the chosen Gaussian curve MFs being
assigned with each input variable. It was found that the number of
MFs for each of the input variables had a great effect on the model
result. The greater the number of MFs for each of the input, the
smaller was the RMSE for the training data. However, too many MFs
can lead to a large RMSE for the checking data. As Table 2 shows, the
training RMSE of the ANFIS (4-4-4) model was 0.01520 which was
smaller than that of the ANFIS (3-3-2), while the checking RMSE of
the ANFIS (4-4-4) model was much larger than that for the ANFIS (3-
3-2). The ANFIS (3-3-2) had better prediction capability than that of
ANFIS (4-4-4). The smaller was the checking RMSE, the greater was
the generalization capability of the model. It can be concluded that
the ANFIS (3-3-2) and ANFIS (4-3-3) are adequate for describing
the output of the DMFC due to the smallest value of the checking
RMSE and relatively small training RMSE.

It was shown in Table 2 that the ANFIS-based model is better
than the ANN and the polynomial. The training and checking RMSE
of the ANFIS (4-3-3) model were 0.01781 and 0.03031, respectively.
As for ANN, the lowest value of the training RMFS was 0.01906 and
for the checking RMSE it was 0.03520. For the polynomial model,
the lowest value of the training and checking RMSE increased to
0.03382 and 0.04373, respectively.

Fig. 9 shows the results of the ANFIS-based model compared
with the 95 checking data points. Fig. 10 compares the chosen ANFIS
model predicted cell voltage with actual experimental values when

+  training points
©  checking pomts |,

voltage (V)

40 12

temperature(°C) 30

current (A)

Fig.10. Comparison of the predicted cell voltage using the chosen ANFIS model with
actual experimental values (methanol concentration: 1.00 molL~1).

Table 3
Fitting parameter numbers and time steps of adaptation

Model Parameter number Time steps of adaptation
Polynomial (fifth-order) 56 1
ANN (20 hidden nodes) 120 2600
ANFIS (3-3-2) 90 110

the methanol concentration was 1.00 mol L~'. Figs. 9 and 10 indi-
cate that the results derived from the ANFIS-based model agreed
with the experimental data well with no over-fitting taking place
on the experimental data.

4.2. Comparison of complexity and running cost

As discussed above, the ANFIS is the best model for describing
the cell performance. However, the results presented in Figs. 6-8
indicate that the other two models can simulate the behaviors of
the DMFC stack as well. Table 3 lists the numbers of fitting param-
eters and the time steps of adaptation for those models that are
considered to have the highest modeling accuracy and relatively
lower complexity.

Obviously, the running cost of polynomial model was the lowest
as the LSM was used. It also can be seen from Table 3 that the num-
ber of parameters of the polynomial model was smaller than those
of the other two models. However, the polynomial model had the
worst accuracy.

Also seen in Table 3, the number of parameters for the ANN
model (120, with 20 hidden nodes) was only a litter larger than that
of the ANFIS-based model (90, 3-3-2), while the training epochs
were 2600 versus 110. This shows that the running cost of the ANFIS
model is much cheaper than that of the ANN model.

5. Performance analysis based on the obtained ANFIS

After the ANFIS model has been established, the characteristics
of the DMFC can be studied based on the obtained ANFIS model.
The ANFIS (3-3-2) was taken as the model for detailed study of the
DMEC stack.

The contours of the stack voltage at each of the six methanol
concentrations are shown in Fig. 11. The stack voltage is inter-
preted as heights with respect to the concentration-temperature
plane. When the concentrations were below 1.67molL-!, the
performance increased with increase of methanol concentration.
However, when the concentration was increased to 1.67 molL-1,
the performance of the DMFC decreased.

Fig. 12 shows the constant concentration surfaces [23] (CCSs)
spread out in an ordered manner for concentrations below
1.67 mol L-1. Fig. 13 shows that the CCSs for concentrations 2.00
and 2.33mol L-! intersect each other, and the CCS for 1.67 mol L~!
concentration is above those two surfaces. It indicates that the
performance of the DMFC at 1.67 molL~! is greater than that at
2.00 and 2.33mol L~!. This is because a higher concentration can
reduce the DMFC performance due to the methanol crossover phe-
nomenon [27]. It is concluded that the concentration should not
be more than 1.50 mol L~ because a higher concentration can lead
to lower fuel utilization efficiency and the lower Faradic efficiency
[28-30].

Figs. 11-13 also indicated that the cell performance increased
with increase of temperature. We know that high temperature can
also intensify methanol crossover which may decrease the effi-
ciency of the system. Thus, in order to obtain higher fuel utilization
efficiency, both methanol concentration and temperature should be
adjusted according to the load of the system. That is the concentra-
tion and temperature should be maintained at suitable low levels
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Fig. 11. The contour of the stack voltage for different methanol concentrations (methanol concentration: 0.67, 1.00, 1.33, 1.67, 2.00 and 2.33 mol L-1).
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Fig. 12. The constant concentration surfaces for low methanol concentrations
(methanol concentration: 0.67, 1.00, 1.33 and 1.67 molL-1).
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Fig. 13. The constant concentration surfaces for high methanol concentrations
(methanol concentration: 1.67, 2.00 and 2.33 molL-1).
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when the system load is small, and only when the load increases
should we increase the concentration and temperature.

6. Conclusions

The performance of the DMFC stack was modeled by polynomial,
ANN and ANFIS methods. It was found that the three kinds of model
could describe the behaviors of the DMFC stack well. Among the
three kinds of models, the ANFIS-based model was the best.

Using the ANFIS model, the characteristics of the DMFC were
studied. It was shown that temperature and methanol con-
centration greatly affected the performance of the DMFC. The
performance increased with an increase of those factors. Within
a limited range of current, the methanol concentrations did not
greatly affect the stack voltage. In order to obtain a higher fuel
utilization efficiency, the methanol concentration and temperature
should be adjusted according to the load on the system. The con-
centration and temperature should be maintained at suitable lower
levels when the system load is small.

In this study, all the experimental data for tuning the models
were obtained under steady-state operating conditions. As a mat-
ter of fact, a dynamic model is also very important for analyzing
and predicting the cell performance [9,10,16,19]. Future work will
be focused on developing ANFIS-based model that can describe
the cell performance under the dynamic operation conditions, and
incorporating other operating parameters into the ANFIS model.
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