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a b s t r a c t

The methanol concentrations, temperature and current were considered as inputs, the cell voltage was
taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-
network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-
based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the
ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature
and methanol concentration greatly affect the performance of the DMFC. Within a restricted current
range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel
utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the
ystem (ANFIS)
rtificial neural network (ANN)

load on the system.
© 2008 Published by Elsevier B.V.
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. Introduction

Direct methanol fuel cells (DMFCs) are one of the most promis-
ng energy conversion devices for portable applications due to their
igh energy density for the generation of electric power from fuel
1]. The output voltage of the DMFC is affected by many factors
uch as air flow rates, temperature and methanol concentration
2–4]. In order to overcome these problems, it is necessary to find a
implified model to design a control strategy for the DMFC system.

The precise mathematical models are of great importance for
easibility studies and optimization of the DMFC system. However,
t is very difficult to build up an analytical model due to the com-
lex nonlinear multi-input and multi-output characteristics for the
MFC system [5]. Although many physical models have been pre-

ented so far, most of them focus on the design of the DMFC and

escription of the relevant internal details [6–8]. In fact, many users
reatly need models that can describe the behavior of fuel cells
nder various operating conditions. Such models are, at the very

east, important for research into the control of fuel cells.

∗ Corresponding author at: A316, INET, Tsinghua University, Beijing 100084,
hina. Tel.: +86 10 62784827; fax: +86 10 62771150.
∗∗ Corresponding author. Tel.: +86 10 62799024; fax: +86 10 62795356.
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The artificial neural network (ANN) has been accepted as an
ffective modeling method and can be used to capture complex
nput/output relationships of interest [9,10]. The fuzzy inference
ystem (FIS) can model the qualitative aspects of human knowledge
nd the reasoning processes without precise quantitative analyses.
t is well suited for dealing with ill-defined and uncertain systems
11]. A hybrid of ANN and FIS can make use of the advantages
f both ANN and FIS, and it has become one focus of research
n recent years [12–14]. A specific approach in a hybrid of ANN
nd FIS development is the adaptive-network-based fuzzy infer-
nce system (ANFIS), which serves as a basis for constructing a
et of fuzzy rules with appropriate functions to generate the stip-
lated input/output pairs [15]. The ANFIS approach has recently
een recognized as an effective modeling method in many fields
f engineering [16–18]. Entchev and Wu successfully used ANFIS to
odel the solid oxide fuel cell (SOFC) [16,19]. Tao and Dong devised

hermal models for proton exchange membrane fuel cells (PEMFCs)
ased on ANFIS [17,20]. To our best knowledge, however, no pub-

ished papers have used ANFIS to model the performance of DMFC
r PEMFC with multi-inputs.
In this study, the concept of ANFIS, ANN- and polynomial-based
odels are described. The temperature, current and methanol con-

entrations were taken as inputs, the cell voltage was taken as
utput, and the cell performance was identified by ANFIS. The ANN-
nd polynomial-based model were selected to be compared with

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:xiexf@tsinghua.edu.cn
mailto:lcw@tsinghua.edu.cn
dx.doi.org/10.1016/j.jpowsour.2008.06.090
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Nomenclature

a coefficient of polynomial model
�a coefficient vector of polynomial model
bi bias for the ith neuron in the hidden layer of ANN
C methanol concentration
CC correlation coefficient
CCS constant concentration surface
Cov covariance
d slope parameter of sigmoid function
D variance
E reversible open-circuit voltage (V)
FIS fuzzy inference system
g sigmoid function
I current (A)
m actual cell voltage from experiment
M vectors made up of actual experimental values
MF membership function
N number of data points
p predicted value by models
P vectors made up of predicted values by models
R correlation coefficient
RMSE root mean square error
S parameter set of ANFIS
S1 premise set of ANFIS
S2 consequent set of ANFIS
T absolute temperature (K)
u firing strength of a rule in the ANFIS
v hidden layer input of the ANN
V stack output voltage (V)
�V vector made up of stack voltage at various condition
wij weight from the jth input to the ith hidden layer

neuron in ANN
wo

ki
weight from the ith output in the hidden layer to the
kth output layer neuron in ANN

yk output from the kth output neuron of ANN
z output of ANFIS

Greek symbol
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3 V. The data set was separated into training data and checking data
at a ratio of 3:1. The training data set was used to train the models,
whereas the checking data set was used to verify the effectiveness
of the models obtained. The checking points were selected at ran-
dom from the whole data base. The distribution of the 1 mol L−1
� membership function of ANFIS

he ANFIS in respect of quality and accuracy. The results show that
he ANFIS-based model has a better performance than the ANN-
nd polynomial-based models.

. Experiments and samples

.1. Experiment

The membrane electrode assembly (MEA) consisted of a poly-
er membrane, the anode and the cathode catalyst layers and

wo gas diffusion layers. Nafion117 (DuPont®) was used as a
embrane. Each cell has an active area of 48.2 cm2. The stack
as assembled using a homemade housing which comprised two

poxy resin end plates and two copper plates of 3 mm thickness
s current collectors. A picture of the DMFC stack is shown in
ig. 1.
The test system consisted of an electronic load controller, a
ethanol solution tank, a heat exchanger, a water bath for pre-

eating the methanol solution, a gear pump for pumping methanol
olution, an air compressor and an Ethernet Multimeter/data log-
er system for logging measurements. All experimental data were F
Fig. 1. Photograph of the tested 5-cell DMFC stack.

btained at ambient pressure. Details of the cell and test system
an be found elsewhere [21].

.2. Preparation of data sets

The methanol solution was pre-heated to the desired tempera-
ure before it was delivered to the fuel cell stack. The flow rates of air
nd methanol solution were kept constant. The methanol exhaust-
ng from the testing stack was not allowed to circulate back to the
olution tank in order to keep the methanol concentration constant.

A typical I–V characteristic of the DMFC is shown in Fig. 2. It
hows that there is a large voltage drop at low current densities
i.e., close to the open-circuit voltage, OCV). This region is known
s the activation polarization region. Modeling with data set taken
rom within the activation polarization region will make the per-
ormance of the model worse due to the rapid change of voltage.
t is not necessary to model the fuel cell condition in this region
ecause the current is too small.

In this study, six methanol concentrations from 0.67 to
.33 mol L−1 (increments of 0.33 mol L−1) were tested. Each of the
ix levels was assigned with sufficient measurement points in the
emperature range from 25 to 55 ◦C and the voltage range from 1.3 to
ig. 2. I–V characteristics of the DMFC stack (methanol concentration, 1.00 mol L−1).
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Fig. 3. The distribution of the checking and training points in the three-dimensional
measurement space (methanol concentration, 1.00 mol L−1).

Table 1
The number of training and checking points at each concentration

Concentration (mol L−1) Number of training points Number of checking points

0.67 45 15
1.00 48 16
1.33 40 13
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.00 56 18

.33 54 18

evel training and checking points in the three-dimensional mea-
urement space is shown in Fig. 3. The number of training points
nd checking points for each concentration are listed in Table 1.

. Method formulation

.1. Polynomial-based models

The voltage of a DMFC depends very much on the operating
onditions including temperature, methanol concentration and the
ow rates of air and methanol solution [22]. When the flow rates
f methanol and air are kept constant, the voltage can be written
s [23]:

= h(I, C, T) (1)

here C denotes the methanol concentration and V, I and T denote
he theoretical open-circuit voltage, voltage and current, respec-
ively. The function in Eq. (1) can be approximated as follows [23]:

= h(I, C, T) = a1 + a2I + a3C + a4T + a5IC + a6IT + a7CT + a8I2

+ a9C2 + a10T2 + a11ICT + a12I2C + a13I2T

+ a14C2T + · · · + anIsCpTq (2)

here �a = [a1, a2, . . . , an]T are the unknown constant coefficients
o be determined and the subscript n of an denotes the number of
nknown coefficients.

In order to solve �a, different experimental measurements [Ii, Ci,
i] with i = 1, 2, . . ., m are taken for various current, concentrations
nd temperature. These are substituted into Eq. (2) to produce a set
f polynomial equations:

⎡ ⎤ ⎡ 2 2 2
� =
⎢⎢⎣

V1
V2
...
Vm

⎥⎥⎦ =
⎢⎢⎣

1
1
...
1

I1 C1 T1 I1C1
I2 C2 T2 I2C2
...

...
...

...
Im Cm Tm ImCm

I1T1 C1T1 I1 C1

I2T2 C2T2 I2
2 C2

2

...
...

...
...

ImTm CmTm Im
2 Cm

2

T1 I1C
T2

2 I2C
...

Tm
2 ImC
s p q ⎤⎡ ⎤

Fig. 4. Structure of a feed-forward three-layer neural network.

Therefore, the unknown coefficients �a = [a1, a2, . . . , an]T can be
olved by the least-squares method (LSM) [23] as follows:

� = (Q TQ )
−1

Q T �V (4)

.2. Artificial neural network (ANN)

ANN can approximate any linear or nonlinear function well. A
eed-forward neural network with supervised training [24] was uti-
ized in this study. The structure of the feed-forward three-layer
eural network is shown in Fig. 4.

The network consists of an input layer, a hidden layer and an
utput layer. The transfer function for the hidden layer is a sigmoid
unction, whose form is defined by:

(v) = 1
1 + e−dv

(5)

here d is the slope parameter. The input of the hidden layer can
e described by the following equation:

i =
n∑

j=1

wijxj + bi (6)

here wij is the weight from the jth input xj to the ith neuron in the
idden layer, and bi is the bias. If the function in the output layer is

inear, the model equation for the entire network can be expressed
s follows:

k =
N∑

i=1

wo
kivi =

N∑
i=1

wo
kig(

n∑
j=1

wijxj + bi) (7)

here yk is the output signal from the kth output neuron, and wo
ki

s the weight from the ith output vi to the kth neuron in the output
ayer. In this study, the weights and bias values of ANN are updated
ccording to the gradient descent momentum algorithm, which is
onsidered to be one of the best training algorithms for the ANN.

.3. Adaptive-network-based fuzzy inference system

The ANFIS is a 5-layered network, in which the layers are
ot fully connected and the membership function parameters are
xtracted from a data set that describes the system behavior. The
NFIS learns features in the data set and adjusts the system param-
ters according to the given error criterion.
1T1 · · · I1C1T1

2T2 · · · Is
2Cp

2Tq
2

...
...

...
mTm · · · Is

mCp
mTq

m

⎥⎥⎦
⎢⎢⎣

a1
a2
...
an

⎥⎥⎦ ⇒ �V = Q �a



1204 R. Wang et al. / Journal of Power So

t
c
[

(
(

w
t
a
s

s
f

�

�

w
t
c

s

u

E

r

u

w
l

f
w

O

w
e

o
i

z

T
n
u

c
g
m
t
a
m
s

t

S

w
c
o
z

z

s
e
g

3

c
b
(

R

w
v

R

w
m
i
t
c

4

i
s
c
t

4

w
fi
fi

Fig. 5. Structure of an adaptive neuro-fuzzy inference system.

For simplicity, suppose that the ANFIS under consideration has
wo inputs and one output, and that the rule base for the system
ontains just two fuzzy if-then rules of the Takagi and Sugeno type
25].

1) Rule 1: if x is A1 and y is B1, then z1 = p1x + q1y + r1.
2) Rule 2: if x is A2 and y is B2, then z2 = p2x + q2y + r2.

here A and B are known as the linguistic labels. The ANFIS archi-
ecture is shown in Fig. 5, in which a circle indicates a fixed node
nd a square indicates an adaptive node. The node functions in the
ame layer are of the same function family as described below:

Layer 1: In this layer the functions of the nodes should be bell-
haped with a maximum value equal to 1 and minimum to 0. The
unctions used were:

Ai
(x) = 1

1 + |(x − ci)/ai|2bi
, i = 1, 2, (8)

Bj
(y) = 1

1 + |(y − cj)/aj|2bj
, j = 1, 2, (9)

here �Ai
(x) and �Bj

(y) are the membership functions (MFs) with
he parameter set {ai, bi, ci}. As the values of these parameters
hange, the bell-shaped functions vary accordingly.

Layer 2: Every node in this layer multiplies all the incoming
ignals (the output of first layer) and sends out the product.

i = �Ai
(x) × �Bj

(y), i = 1, 2, and j = 1, 2, (10)

ach node output represents the firing strength of a rule.
Layer 3: The ith node in the layer calculates the ratio of the ith

ule’s firing strength to the sum of all rules firing strength.

¯ i = ui

u1 + u2
, i = 1, 2, (11)

here u1 and u2 are the outputs of the two nodes of the second
ayer.

Layer 4: The dimension of the layer determines the number of
uzzy rules in the system. Every node in this layer is a square node
ith a linear function whose form is defined by

4
i = ūizi = ūi(pix + qiy + ri), i = 1, 2, (12)

here ūi is the output of layer 3, and {pi, qi, ri} denotes the param-
ter set referred to as the consequent parameters.

Layer 5: The single node in the layer simply computes the sum
f the layer 4 outputs in order to obtain the overall system output,
.e.,

=
∑

ū z = ū z + ū z = u1 z + u2 z (13)
i

i i 1 1 2 2 u1 + u2
1 u1 + u2

2

he ANFIS network should be trained to learn about the data and its
ature. During the learning processes, the parameters were tuned
ntil the desired output was reached. The gradient descent method

t
l
o
w
l

urces 185 (2008) 1201–1208

an be used to identify the parameters in the ANFIS. However, the
radient descent method is slow and tends to be trapped in local
inima. Therefore, a hybrid learning algorithm was used to iden-

ify the parameters of ANFIS. It applied a combination of the LSM
nd the back-propagation gradient descent method for training FIS
embership function parameters to emulate a given training data

et.
The parameter set S in the proposed network can be spilt into

wo subsets:

= S1 ⊕ S2 (14)

here ⊕ is the direct sum, and S1 and S2 represent premise and
onsequent sets, respectively. In fact, since the network output is
btained as a linear combination of all coming signals, the output
can be described as:

= (ū1x)p1 + (ū1y)q1 + ū1r1 + (ū2x)p2 + (ū2y)q2 + ū2r2 (15)

The learning rules are performed through two steps: the con-
equent parameters are first identified by the LSM, and then the
rror rates propagate backward and the premise is updated by the
radient descent method [15].

.4. Criteria for performance evaluation

The performance of the models can be evaluated using different
riteria. In this work, the performance of each model was evaluated
y the root mean square error (RMSE) and correlation coefficients
CC) for the training and testing data sets.

The RMSE is defined by:

MSE =

√√√√ 1
N

N∑
i=1

(pi − mi)
2 (16)

here m is the actual value from experiments, p is the predicted
alue from the models and N is the number of data points.

The CC is defined by:

= Cov(M, P)√
D(M)

√
D(P)

(17)

here M and P are vectors made up of the actual value from experi-
ents and the predicted value from models, respectively. Cov(M,P)

s the covariance for vectors M and P, where D(M) and D(P) denote
he variance of M and P, respectively. The closer the correlation
oefficient R is to 1, the more precise is the model.

. Results and discussion

In order to compare the performance of the different model-
ng methods, the models were trained with the same training data
et. The validity of the models obtained was tested using the same
hecking data set. The CC of the checking data and the RMSE of
raining and checking data for each model are listed in Table 2.

.1. Comparison of modeling accuracy

Fig. 6 shows the results of the polynomial models compared
ith the 95 checking data points. Third-order, forth-order and
fth-order polynomials with 20, 35 and 56 unknown constant coef-
cients, respectively, were trained and checked. It was found that

he fifth-order polynomial had the best performance due to the
argest coefficient number. Sixth-order polynomial was also tried
ut in this study, but it was found that the generalization capability
as very bad as the RMSE for the checking data was abnormally

arge.
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Table 2
Modeling results with different types of models

Models RMSE (training data) RMSE (checking data) Correlation coefficient (checking data)

Polynomial (third-order) 0.03743 0.05033 0.99570
Polynomial (forth-order) 0.03596 0.04777 0.99651
Polynomial (fifth-order) 0.03382 0.04373 0.99757
ANN (10 hidden nodes) 0.02371 0.03955 0.99838
ANN (15 hidden nodes) 0.02188 0.03619 0.99835
ANN (20 hidden nodes) 0.02124 0.03520 0.99900
ANN (25 hidden nodes) 0.01920 0.03725 0.99874
ANN (30 hidden nodes) 0.01906 0.04428 0.99851
ANFIS (2-2-2) 0.03460 0.04597 0.99709
ANFIS (3-2-2) 0.02283 0.03571 0.99873
ANFIS (2-3-2) 0.03282 0.04769 0.99662
ANFIS (2-2-3) 0.03361 0.04797 0.99656
ANFIS (3-3-2) 0.02049 0.03120 0.99907
ANFIS (3-2-3) 0.01819 0.03380 0.99804
ANFIS (2-3-3) 0.03268 0.04889 0.99639
ANFIS (3-3-3) 0.01753 0.03565 0.99892
ANFIS (4-3-3) 0.01781 0.03031 0.99933
ANFIS (3-4-3) 0.01646 0.04153 0.99805
ANFIS (3-3-4) 0.01528 0.06499 0.99194
A 0.03860 0.99851
A 0.06289 0.99185
A 0.06274 0.99183
A 0.07963 0.98013

p
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t
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F
w

NFIS (4-4-3) 0.01874
NFIS (4-3-4) 0.01693
NFIS (3-4-4) 0.01616
NFIS (4-4-4) 0.01520

Fig. 7 shows the predicted values of the ANN-based models com-
ared with the checking data points. During the early stage of the
raining, the checking error decreased rapidly. Over-fitting was rec-
gnized by the error becoming flat or even increasing slightly, and at
his point the training was stopped. Many better ANN models with
ifferent numbers of hidden nodes were trained. It was found that
he greater the number of hidden nodes, the smaller was the RMSE
or the training data, that is the ANN with more hidden nodes could
pproximate the training data more precisely. However, too many
idden nodes might lead to over-fitting on the experimental data
nd a decreased generalization capability of the ANN. For example,
he checking RMSE of the ANN with 20 and 30 hidden nodes were
.03520 and 0.04428, respectively. This means that the ANN with
0 hidden nodes has better generalization capability than that of
he ANN with 30 hidden nodes.

Comparison of predicted values of 95 checking data points using

wo ANFIS-based models, is shown in Fig. 8. ANFIS with different
ypes of MFs such as triangular-shaped, Gaussian curve, Sigmoid-
haped MFs and the like [26] were tried out. Among these different
ypes of MFs, the Gaussian curve MF provided the best results for

ig. 6. Comparison of the predicted cell voltage using the polynomial-based model
ith actual experimental values.

Fig. 7. Comparison of the predicted cell voltage using the ANN-based models with
actual experimental values.

Fig. 8. Comparison of the predicted cell voltage using the ANFIS-based models with
actual experimental values.
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Fitting parameter numbers and time steps of adaptation

Model Parameter number Time steps of adaptation
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ig. 9. Comparison of experimental data and predicted voltages using the chosen
NFIS model.

he prediction of performance. ANFIS-based models were tried out
ith different numbers of the chosen Gaussian curve MFs being

ssigned with each input variable. It was found that the number of
Fs for each of the input variables had a great effect on the model

esult. The greater the number of MFs for each of the input, the
maller was the RMSE for the training data. However, too many MFs
an lead to a large RMSE for the checking data. As Table 2 shows, the
raining RMSE of the ANFIS (4-4-4) model was 0.01520 which was
maller than that of the ANFIS (3-3-2), while the checking RMSE of
he ANFIS (4-4-4) model was much larger than that for the ANFIS (3-
-2). The ANFIS (3-3-2) had better prediction capability than that of
NFIS (4-4-4). The smaller was the checking RMSE, the greater was

he generalization capability of the model. It can be concluded that
he ANFIS (3-3-2) and ANFIS (4-3-3) are adequate for describing
he output of the DMFC due to the smallest value of the checking
MSE and relatively small training RMSE.

It was shown in Table 2 that the ANFIS-based model is better
han the ANN and the polynomial. The training and checking RMSE
f the ANFIS (4-3-3) model were 0.01781 and 0.03031, respectively.
s for ANN, the lowest value of the training RMFS was 0.01906 and

or the checking RMSE it was 0.03520. For the polynomial model,
he lowest value of the training and checking RMSE increased to

.03382 and 0.04373, respectively.

Fig. 9 shows the results of the ANFIS-based model compared
ith the 95 checking data points. Fig. 10 compares the chosen ANFIS
odel predicted cell voltage with actual experimental values when

ig. 10. Comparison of the predicted cell voltage using the chosen ANFIS model with
ctual experimental values (methanol concentration: 1.00 mol L−1).
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olynomial (fifth-order) 56 1
NN (20 hidden nodes) 120 2600
NFIS (3-3-2) 90 110

he methanol concentration was 1.00 mol L−1. Figs. 9 and 10 indi-
ate that the results derived from the ANFIS-based model agreed
ith the experimental data well with no over-fitting taking place

n the experimental data.

.2. Comparison of complexity and running cost

As discussed above, the ANFIS is the best model for describing
he cell performance. However, the results presented in Figs. 6–8
ndicate that the other two models can simulate the behaviors of
he DMFC stack as well. Table 3 lists the numbers of fitting param-
ters and the time steps of adaptation for those models that are
onsidered to have the highest modeling accuracy and relatively
ower complexity.

Obviously, the running cost of polynomial model was the lowest
s the LSM was used. It also can be seen from Table 3 that the num-
er of parameters of the polynomial model was smaller than those
f the other two models. However, the polynomial model had the
orst accuracy.

Also seen in Table 3, the number of parameters for the ANN
odel (120, with 20 hidden nodes) was only a litter larger than that

f the ANFIS-based model (90, 3-3-2), while the training epochs
ere 2600 versus 110. This shows that the running cost of the ANFIS
odel is much cheaper than that of the ANN model.

. Performance analysis based on the obtained ANFIS

After the ANFIS model has been established, the characteristics
f the DMFC can be studied based on the obtained ANFIS model.
he ANFIS (3-3-2) was taken as the model for detailed study of the
MFC stack.

The contours of the stack voltage at each of the six methanol
oncentrations are shown in Fig. 11. The stack voltage is inter-
reted as heights with respect to the concentration–temperature
lane. When the concentrations were below 1.67 mol L−1, the
erformance increased with increase of methanol concentration.
owever, when the concentration was increased to 1.67 mol L−1,

he performance of the DMFC decreased.
Fig. 12 shows the constant concentration surfaces [23] (CCSs)

pread out in an ordered manner for concentrations below
.67 mol L−1. Fig. 13 shows that the CCSs for concentrations 2.00
nd 2.33 mol L−1 intersect each other, and the CCS for 1.67 mol L−1

oncentration is above those two surfaces. It indicates that the
erformance of the DMFC at 1.67 mol L−1 is greater than that at
.00 and 2.33 mol L−1. This is because a higher concentration can
educe the DMFC performance due to the methanol crossover phe-
omenon [27]. It is concluded that the concentration should not
e more than 1.50 mol L−1 because a higher concentration can lead
o lower fuel utilization efficiency and the lower Faradic efficiency
28–30].

Figs. 11–13 also indicated that the cell performance increased
ith increase of temperature. We know that high temperature can
lso intensify methanol crossover which may decrease the effi-
iency of the system. Thus, in order to obtain higher fuel utilization
fficiency, both methanol concentration and temperature should be
djusted according to the load of the system. That is the concentra-
ion and temperature should be maintained at suitable low levels
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Fig. 11. The contour of the stack voltage for different methanol concentrations (methanol concentration: 0.67, 1.00, 1.33, 1.67, 2.00 and 2.33 mol L−1).

Fig. 12. The constant concentration surfaces for low methanol concentrations
(methanol concentration: 0.67, 1.00, 1.33 and 1.67 mol L−1).

Fig. 13. The constant concentration surfaces for high methanol concentrations
(methanol concentration: 1.67, 2.00 and 2.33 mol L−1).
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hen the system load is small, and only when the load increases
hould we increase the concentration and temperature.

. Conclusions

The performance of the DMFC stack was modeled by polynomial,
NN and ANFIS methods. It was found that the three kinds of model
ould describe the behaviors of the DMFC stack well. Among the
hree kinds of models, the ANFIS-based model was the best.

Using the ANFIS model, the characteristics of the DMFC were
tudied. It was shown that temperature and methanol con-
entration greatly affected the performance of the DMFC. The
erformance increased with an increase of those factors. Within
limited range of current, the methanol concentrations did not

reatly affect the stack voltage. In order to obtain a higher fuel
tilization efficiency, the methanol concentration and temperature
hould be adjusted according to the load on the system. The con-
entration and temperature should be maintained at suitable lower
evels when the system load is small.

In this study, all the experimental data for tuning the models
ere obtained under steady-state operating conditions. As a mat-

er of fact, a dynamic model is also very important for analyzing
nd predicting the cell performance [9,10,16,19]. Future work will
e focused on developing ANFIS-based model that can describe
he cell performance under the dynamic operation conditions, and
ncorporating other operating parameters into the ANFIS model.
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